Recursive geometry of the flow complex and topology of the flow complex filtration
نویسندگان
چکیده
The flow complex is a geometric structure, similar to the Delaunay tessellation, to organize a set of (weighted) points in Rk. Flow shapes are topological spaces corresponding to substructures of the flow complex. The flow complex and flow shapes have found applications in surface reconstruction, shape matching, and molecular modeling. In this article we give an algorithm for computing the flow complex of weighted points in any dimension. The algorithm reflects the recursive structure of the flow complex. On the basis of the algorithm we establish a topological similarity between flow shapes and the nerve of a corresponding ball set, namely homotopy equivalence. ? Part of this research was supported by the Deutsche Forschungsgemeinschaft within the European graduate program ’Combinatorics, Geometry, and Computation’ (No. GRK 588/2). Also partially supported by the IST Programme of the EU as a Shared-cost RTD(FET Open) Project under Contract No IST-006413 (ACS Algorithms for Complex Shapes). Also supported by NSF CARGO grant DMS0310642. Preprint submitted to Elsevier Science 15 May 2007
منابع مشابه
Construction of Hexahedral Block Topology and its Decomposition to Generate Initial Tetrahedral Grids for Aerodynamic Applications
Making an initial tetrahedral grid for complex geometry can be a tedious and time consuming task. This paper describes a novel procedure for generation of starting tetrahedral cells using hexahedral block topology. Hexahedral blocks are arranged around an aerodynamic body to form a flow domain. Each of the hexahedral blocks is then decomposed into six tetrahedral elements to obtain an initial t...
متن کاملTurbulent Flow in 2-D Domains with Complex Geometry-Finite Elelment Method
Using the highly recommended numerical techniques, a finite element computer code is developed to analyse the steady incompressible, laminar and turbulent flows in 2-D domains with complex geometry. The Petrov-Galerkin finite element formulation is adopted to avoid numerical oscillations. Turbulence is modeled using the two equation k-ω model. The discretized equations are written in the form o...
متن کاملTurbulent Flow in 2-D Domains with Complex Geometry-Finite Elelment Method
Using the highly recommended numerical techniques, a finite element computer code is developed to analyse the steady incompressible, laminar and turbulent flows in 2-D domains with complex geometry. The Petrov-Galerkin finite element formulation is adopted to avoid numerical oscillations. Turbulence is modeled using the two equation k-ω model. The discretized equations are written in the form o...
متن کاملApplication of the Schwarz-Christoffel Transformation in Solving Two-Dimensional Turbulent Flows in Complex Geometries
In this paper, two-dimensional turbulent flows in different and complex geometries are simulated by using an accurate grid generation method. In order to analyze the fluid flow, numerical solution of the continuity and Navier-Stokes equations are solved using CFD techniques. Considering the complexity of the physical geometry, conformal mapping is used to generate an orthogonal grid by means of...
متن کاملNumerical Simulation of the Wake Flow Behind an Ellipse using Random Vortex Method (RESEARCH NOTE)
Direct numerical simulation of the wake flow around and behind a planar ellipse using a random vortex method is presented. Fluid is considered incompressible and the aspect ratios of ellipse and the angles of attacks are varied. This geometry can be a logical prelude to the more complex geometries, but less time dependent experimental measurements are available to validate the numerical results...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Comput. Geom.
دوره 40 شماره
صفحات -
تاریخ انتشار 2008